

226 Advanced Digital Systems

the non-blocking assignment does not take effect until after the current simulation time unit. This is
analogous to the behavior of a real flop wherein the output does not transition until a finite time has
elapsed from its triggering event. Under certain circumstances, either type of assignment will yield
the same result in both simulation and synthesis. In other situations, the results will differ, as illus-
trated in Fig. 10.4.

In the first case, regs Q1 and Q2 are tracked at two different instants in time. First, their current
states are maintained as they were just prior to the clock edge for the purpose of using their values in
subsequent assignments. Second, their new states are assigned as dictated by the RTL. When Q2 is
assigned, it takes the previous value of Q1, not the new value of Q1, which is D. Two flops are in-
ferred.

In the second case, variables Q1 and Q2 are tracked at a single instant in time. Q1 is assigned the
value of variable D, and then Q2 is assigned the new value of variable Q1. Q1 has become a tempo-
rary placeholder and has no real effect on its own. Therefore, only a single flop, Q2, is inferred.

Utilizing HDL to design logic requires software tools more complex than just pencil and paper.
However, the benefits quickly accumulate for designs of even moderate complexity. The digital

// synchronous reset

always @(posedge CLK)
begin
 if (RESET) // RESET evaluated only at CLK rising edge
 Q <= 1´b0;
 else
 Q <= D;
end

// asynchronous reset

always @(posedge CLK or posedge RESET)
begin
 if (RESET) // RESET evaluated whenever it goes active
 Q <= 1´b0;
 else
 Q <= D;
end

FIGURE 10.3 Verilog RTL flip-flop inference.

// Non-blocking assignments: two flops inferred

always @(posedge CLK)
begin
 Q1 <= D;
 Q2 <= Q1;
end

// Blocking assignments: one flop inferred

always @(posedge CLK)
begin
 Q1 = D;
 Q2 = Q1;
end

FIGURE 10.4 Verilog blocking vs. non-blocking assignment.

-Balch.book Page 226 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 227

functions and techniques discussed in the remainder of this chapter show how practical HDL design
can be.

10.2 CPU SUPPORT LOGIC

Most digital systems require some quantity of miscellaneous glue logic to help tie a CPU to its
memory and I/O peripherals. Some of the most common support functions are address decoding,
basic I/O signals, interrupt control, and timers. Another common function is interface conversion
whereby the CPU needs to talk with a peripheral that has an interface that is incompatible with that
of the CPU. Interface conversion can range from simple control signal polarity adjustments to com-
plex buffering schemes that cross clock domains with FIFOs.

Address decoding is usually a combinatorial implementation, because many CPU interfaces are
nonpipelined. When performing address decoding and other bus control functions for a pipelined
CPU bus, a more complex synchronous circuit is called for that can track the various pipeline stages
and take the necessary actions during each stage. Basic combinatorial address decoding consists of
mapping ranges of addresses to chip selects. Chip select signals are usually active-low by convention
and are numbered upward from 0. For the sake of discussion, consider the 24-bit memory map in Ta-
ble 10.1 to design an address decoder.

Four external chip selects are called out. Instead of using the asterisk to denote active-low signals,
the underscore is used, because an asterisk is not a valid character for use in a Verilog identifier. The
first two chip selects are used for ROM (e.g., flash or EPROM) and their memory ranges are swappa-
ble according to the RomSel signal. It is sometimes useful to provide an alternate boot ROM that can
be installed at a later date for various purposes such as a software upgrade. When boot ROM is im-
plemented in flash, the CPU is able to load new data into its ROM. If there is no other way to send a
new software image to the system, the image can be loaded onto a ROM module that is temporarily

TABLE

10.1 Example Memory Map

Address Range Qualifier Chip Select Function

0x000000–0x0FFFFF RomSel=0
CS0_ 1-MB default boot ROM

0x100000–0x1FFFFF RomSel=1

0x100000–0x1FFFFF RomSel=0
CS1_ 1-MB ROM module

0x000000–0x0FFFFF RomSel=1

0x200000–0x21FFFF N/A CS2_ 128-kB SRAM

0x220000–0x2FFFFF N/A None Unused

0x300000–0x30000F N/A CS3_ UART

0x300010–0x3FFFFF N/A None Unused

0x400000–0x4FFFFF N/A Internal Control/status registers

0x500000–0xFFFFFF N/A None Unused

-Balch.book Page 227 Thursday, May 15, 2003 3:46 PM

